Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 33(2): e16933, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36942798

ABSTRACT

In Atlantic salmon, age at maturation is a life history trait governed by a sex-specific trade-off between reproductive success and survival. Following environmental changes across large areas of the Northeast Atlantic, many populations currently display smaller size at age and higher age at maturation. However, whether these changes reflect rapid evolution or plasticity is unknown. Approximately 1500 historical and contemporary salmon from the river Etne in Western Norway, genotyped at 50,000 SNPs, revealed three loci associated with age at maturation. These included vgll3 and six6 which collectively explained 36%-50% of the age at maturation variation in the 1983-1984 period. These two loci also displayed sex-specific epistasis, as the effect of six6 was only detected in males bearing two copies of the late maturation allele for vgll3. Strikingly, despite allelic frequencies at vgll3 remaining unchanged, the combined influence of these genes was nearly absent in all samples from 2013 to 2016, and genome-wide heritability strongly declined between the two time-points. The difference in age at maturation between males and females was upheld in the population despite the loss of effect from the candidate loci, which strongly points towards additional causative mechanisms resolving the sexual conflict. Finally, because admixture with farmed escaped salmon was excluded as the origin of the observed disconnection between gene(s) and maturation age, we conclude that the environmental changes observed in the North Atlantic during the past decades have led to bypassing of the influence of vgll3 and six6 on maturation through growth-driven plasticity.


Subject(s)
Life History Traits , Salmo salar , Male , Female , Animals , Phenotype , Genotype , Reproduction/genetics , Alleles , Salmo salar/genetics
2.
Evol Appl ; 16(12): 1921-1936, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38143898

ABSTRACT

Iteroparity represents an important but often overlooked component of life history in anadromous Atlantic salmon. Here, we combined individual DNA profiling and scale reading to identify repeat spawners among ~8000 adult salmon captured in a fish trap in the river Etne, Norway, in the period 2015-2019. Additionally, 171 outward migrating kelts were captured in the spring of 2018-2020 and identified using molecular methods to estimate weight loss since ascending the river to spawn. The overall frequency of repeat spawners identified using molecular methods and scale reading combined was 7% in females and 3% in males (5% in total). Most of these (83%) spent one full year reconditioning at sea before returning for their second spawning, with a larger body size compared with their size at first spawning, gaining on average 15.9 cm. A single female migrating back into the river for a fifth breeding season was also identified. On average, kelts lost 40% bodyweight in the river, and more female than male kelts were captured during outward migration. The date of arrival in the upstream fish trap was significantly but moderately correlated between maiden and second entry to the river for alternate and consecutive spawners. The estimated contribution from repeat spawners to the total number of eggs deposited in the river each year varied between 2% and 17% (average 12%). Molecular-based methods marginally underestimated the number of repeat spawners compared with scale reading (5% vs 7%) likely due to a small number of returning spawners not being trapped and sampled. Differences between the methods were most evident when classifying the spawning strategy (alternate or consecutive-year repeat spawners), where the scale method identified proportionally more consecutive-year repeat spawners than the molecular method. This unique data set reveals previously unstudied components of this life history strategy and demonstrates the importance of repeat spawners in population recruitment.

3.
Evol Appl ; 16(7): 1328-1344, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37492153

ABSTRACT

Resistance toward the antiparasitic pyrethroid, deltamethrin, is reported in the Atlantic salmon louse (Lepeophtheirus salmonis salmonis), a persistent ectoparasite of farmed and wild salmonids. The resistance mechanism is linked to mitochondrial DNA (mtDNA), where genetic markers for resistance have been identified. Here, we investigated how widespread pyrethroid use in aquaculture may have influenced mtDNA variation in lice, and the dispersion of resistant haplotypes across the North Atlantic, using historical (2000-2002 "pre-resistance") and contemporary (2014-2017 "post-resistance") samples. To study this, we sequenced ATPase 6 and cytochrome b, genotyped two genetic markers for deltamethrin resistance, and genotyped microsatellites as "neutral" controls of potential population bottlenecks. Overall, we observed a modest reduction in mtDNA diversity in the period 2000-2017, but no reduction in microsatellite variation was observed. The reduction in mtDNA variation was especially distinct in two of the contemporary samples, fixed for one and two haplotypes, respectively. By contrast, all historical samples consisted of close to one mtDNA haplotype per individual. No population genetic structure was detected among the historical samples for mtDNA nor microsatellites. By contrast, significant population genetic differentiation was observed for mtDNA among some of the contemporary samples. However, the observed population genetic structure was tightly linked with the pattern of deltamethrin resistance, and we therefore conclude that it primarily reflects the transient mosaic of pyrethroid usage in time and space. Two historically undetected mtDNA haplotypes dominated in the contemporary samples, both of which were linked to deltamethrin resistance, demonstrating primarily two origins of deltamethrin resistance in the North Atlantic. Collectively, these data demonstrate that the widespread use of pyrethroids in commercial aquaculture has substantially altered the patterns of mtDNA diversity in lice across the North Atlantic, and that long-distance dispersion of resistance is rapid due to high level of genetic connectivity that is observed in this species.

4.
Evol Appl ; 15(7): 1162-1176, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35899259

ABSTRACT

Identifying how physical and biotic factors shape genetic connectivity among populations in time and space is essential to our understanding of the evolutionary trajectory as well as the management of marine species. Atlantic cod is a widespread and commercially important marine species displaying several ecotypes with different life history strategies. Using three sets of SNPs: neutral, informative, and genome-inversion linked, we studied population genetic structure of ~2500 coastal Atlantic cod (CC) from 40 locations along Norway's 2500 km coastline, including nine fjords. We observed: (1) a genetic cline, suggesting a mechanism of isolation by distance, characterized by a declining F ST between CC and North East Arctic Cod (NEAC-genetically distinct migratory ecotype) with increasing latitude, (2) that in the north, samples of CC from outer-fjord areas were genetically more similar to NEAC than were samples of CC from their corresponding inner-fjord areas, (3) greater population genetic differentiation among CC sampled from outer-fjord areas along the coast, than among CC sampled from their corresponding inner-fjord areas, (4) genetic differentiation among samples of CC from both within and among fjords. Collectively, these results permit us to draw two main conclusions. First, that differences in the relative presence of the genetically highly distinct, migratory ecotype NEAC, declining from north to south and from outer to inner fjord, plays the major role in driving population genetic structure of the Norwegian CC. Second, that there is limited connectivity between CC from different fjords. These results suggest that the current management units implemented for this species in Norway should be divided into smaller entities. Furthermore, the situation where introgression from one ecotype drives population genetic structure of another, as is the case here, may exist in other species and geographical regions, thus creating additional challenges for sustainable fisheries management.

5.
Evol Appl ; 15(5): 853-864, 2022 May.
Article in English | MEDLINE | ID: mdl-35603027

ABSTRACT

The release of domesticated conspecifics into the natural environment, whether deliberate or accidental, has the potential to alter the genetic integrity and evolutionary trajectory of wild populations. This widespread challenge is of particular concern for wild Atlantic salmon. By investigating phenotypic differences between the offspring of domesticated, hybrid, and wild Atlantic salmon released into the natural environment, earlier studies have documented the short-term consequences of introgression from domesticated fish into wild salmon populations. However, few studies have investigated the joined product of introgression and natural selection after several generations. Here, we investigated the phenotypic response of an Atlantic salmon population that has been subjected to an average of 24% genetic admixture by domesticated conspecifics escaping from fish farms over three decades (approximately 6-7 generations). Individual levels of admixture were positively correlated with increased size at the smolt and adult stages for both sexes, a decrease in the age of male smolts, and a decrease in the age at maturity for males. These life history changes are presumably the consequence of the well-documented directional selection for increased growth in domesticated salmon and are likely maladaptive. However, the most novel result of this study is that admixture was positively linked with delayed date of return to the river, with highly admixed fish arriving up to 26 days later than nonadmixed fish. Potentially, this phenological change provides admixed individuals with a survival advantage in the later phase of the life cycle as it reduces their period of exposure to selection through rod and line angling. We, therefore, conclude that while gene flow from domesticated conspecifics changes life history and phenological traits of wild Atlantic salmon populations, most of which are likely to be maladaptive, when pressured by additional anthropogenic challenges, some changes may confer a fitness advantage for a short part of the life cycle.

6.
Genomics ; 113(6): 3666-3680, 2021 11.
Article in English | MEDLINE | ID: mdl-34403763

ABSTRACT

Copepods encompass numerous ecological roles including parasites, detrivores and phytoplankton grazers. Nonetheless, copepod genome assemblies remain scarce. Lepeophtheirus salmonis is an economically and ecologically important ectoparasitic copepod found on salmonid fish. We present the 695.4 Mbp L. salmonis genome assembly containing ≈60% repetitive regions and 13,081 annotated protein-coding genes. The genome comprises 14 autosomes and a ZZ-ZW sex chromosome system. Assembly assessment identified 92.4% of the expected arthropod genes. Transcriptomics supported annotation and indicated a marked shift in gene expression after host attachment, including apparent downregulation of genes related to circadian rhythm coinciding with abandoning diurnal migration. The genome shows evolutionary signatures including loss of genes needed for peroxisome biogenesis, presence of numerous FNII domains, and an incomplete heme homeostasis pathway suggesting heme proteins to be obtained from the host. Despite repeated development of resistance against chemical treatments L. salmonis exhibits low numbers of many genes involved in detoxification.


Subject(s)
Copepoda , Fish Diseases , Parasites , Acclimatization , Animals , Copepoda/genetics , Copepoda/parasitology , Fish Diseases/genetics , Parasites/genetics , Transcriptome
7.
R Soc Open Sci ; 8(5): 210265, 2021 May 26.
Article in English | MEDLINE | ID: mdl-34084551

ABSTRACT

Nothing lasts forever, including the effect of chemicals aimed to control pests in food production. As old pesticides have been compromised by emerging resistance, new ones have been introduced and turned the odds back in our favour. With time, however, some pests have developed multi-pesticide resistance, challenging our ability to control them. In salmonid aquaculture, the ectoparasitic salmon louse has developed resistance to most of the available delousing compounds. The discovery of genetic markers associated with resistance to organophosphates and pyrethroids made it possible for us to investigate simultaneous resistance to both compounds in approximately 2000 samples of salmon lice from throughout the North Atlantic in the years 2000-2016. We observed widespread and increasing multiresistance on the European side of the Atlantic, particularly in areas with intensive aquaculture. Multiresistant lice were also found on wild Atlantic salmon and sea trout, and also on farmed salmonid hosts in areas where delousing chemicals have not been used. In areas with intensive aquaculture, there are almost no lice left that are sensitive to both compounds. These results demonstrate the speed to which this parasite can develop widespread multiresistance, illustrating why the aquaculture industry has repeatedly lost the arms race with this highly problematic parasite.

8.
Ecol Evol ; 11(4): 1691-1718, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33613998

ABSTRACT

Habitat changes represent one of the five most pervasive threats to biodiversity. However, anthropogenic activities also have the capacity to create novel niche spaces to which species respond differently. In 1880, one such habitat alterations occurred in Landvikvannet, a freshwater lake on the Norwegian coast of Skagerrak, which became brackish after being artificially connected to the sea. This lake is now home to the European sprat, a pelagic marine fish that managed to develop a self-recruiting population in barely few decades. Landvikvannet sprat proved to be genetically isolated from the three main populations described for this species; that is, Norwegian fjords, Baltic Sea, and the combination of North Sea, Kattegat, and Skagerrak. This distinctness was depicted by an accuracy self-assignment of 89% and a highly significant F ST between the lake sprat and each of the remaining samples (average of ≈0.105). The correlation between genetic and environmental variation indicated that salinity could be an important environmental driver of selection (3.3% of the 91 SNPs showed strong associations). Likewise, Isolation by Environment was detected for salinity, although not for temperature, in samples not adhering to an Isolation by Distance pattern. Neighbor-joining tree analysis suggested that the source of the lake sprat is in the Norwegian fjords, rather than in the Baltic Sea despite a similar salinity profile. Strongly drifted allele frequencies and lower genetic diversity in Landvikvannet compared with the Norwegian fjords concur with a founder effect potentially associated with local adaptation to low salinity. Genetic differentiation (F ST) between marine and brackish sprat is larger in the comparison Norway-Landvikvannet than in Norway-Baltic, which suggests that the observed divergence was achieved in Landvikvannet in some 65 generations, that is, 132 years, rather than gradually over thousands of years (the age of the Baltic Sea), thus highlighting the pace at which human-driven evolution can happen.

9.
Evol Appl ; 13(10): 2673-2688, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33294016

ABSTRACT

Challenging long-held perceptions of fish management units can help to protect vulnerable stocks. When a fishery consisting of multiple genetic stocks is managed as a single unit, overexploitation and depletion of minor genetic units can occur. Atlantic cod (Gadus morhua) is an economically and ecologically important marine species across the North Atlantic. The application of new genomic resources, including SNP arrays, allows us to detect and explore novel structure within specific cod management units. In Norwegian waters, coastal cod (i.e. those not undertaking extensive migrations) are divided into two arbitrary management units defined by ICES: one between 62° and 70°N (Norwegian coastal cod; NCC) and one between 58° and 62°N (Norwegian coastal south; NCS). Together, these capture a fishery area of >25,000 km2 containing many spawning grounds. To assess whether these geographic units correctly represent genetic stocks, we analysed spawning cod of NCC and NCS for more than 8,000 SNPs along with samples of Russian White Sea cod, north-east Arctic cod (NEAC: the largest Atlantic stock), and outgroup samples representing the Irish and Faroe Sea's. Our analyses revealed large differences in spatial patterns of genetic differentiation across the genome and revealed a complex biological structure within NCC and NCS. Haplotype maps from four chromosome sets show regional specific SNP indicating a complex genetic structure. The current management plan dividing the coastal cod into only two management units does not accurately reflect the genetic units and needs to be revised. Coastal cod in Norway, while highly heterogenous, is also genetically distinct from neighbouring stocks in the north (NEAC), west (Faroe Island) and the south. The White Sea cod are highly divergent from other cod, possibly yielding support to the earlier notion of subspecies rank.

10.
Front Genet ; 11: 544207, 2020.
Article in English | MEDLINE | ID: mdl-33173531

ABSTRACT

Despite the key role that sex-determination plays in evolutionary processes, it is still poorly understood in many species. In salmonids, which are among the best studied fishes, the master sex-determining gene sexually dimorphic on the Y-chromosome (sdY) has been identified. However, sdY displays unexplained discordance to the phenotypic sex, with a variable frequency of phenotypic females being reported as genetic males. Multiple sex determining loci in Atlantic salmon have also been reported, possibly as a result of recent transposition events in this species. We hypothesized the existence of an autosomal copy of sdY, causing apparent discordance between phenotypic and genetic sex, that is transmitted in accordance with autosomal inheritance. To test this, we developed a qPCR methodology to detect the total number of sdY copies present in the genome. Based on the observed phenotype/genotype frequencies and linkage analysis among 2,025 offspring from 64 pedigree-controlled families of accurately phenotyped Atlantic salmon, we identified both males and females carrying one or two autosomal copies of sdY in addition to the Y-specific copy present in males. Patterns across families were highly consistent with autosomal inheritance. These autosomal sdY copies appear to have lost the ability to function as a sex determining gene and were only occasionally assigned to the actual sex chromosome in any of the affected families.

11.
BMC Genet ; 21(1): 118, 2020 10 09.
Article in English | MEDLINE | ID: mdl-33036553

ABSTRACT

BACKGROUND: Marine fish populations are often characterized by high levels of gene flow and correspondingly low genetic divergence. This presents a challenge to define management units. Goldsinny wrasse (Ctenolabrus rupestris) is a heavily exploited species due to its importance as a cleaner-fish in commercial salmonid aquaculture. However, at the present, the population genetic structure of this species is still largely unresolved. Here, full-genome sequencing was used to produce the first genomic reference for this species, to study population-genomic divergence among four geographically distinct populations, and, to identify informative SNP markers for future studies. RESULTS: After construction of a de novo assembly, the genome was estimated to be highly polymorphic and of ~600Mbp in size. 33,235 SNPs were thereafter selected to assess genomic diversity and differentiation among four populations collected from Scandinavia, Scotland, and Spain. Global FST among these populations was 0.015-0.092. Approximately 4% of the investigated loci were identified as putative global outliers, and ~ 1% within Scandinavia. SNPs showing large divergence (FST > 0.15) were picked as candidate diagnostic markers for population assignment. One hundred seventy-three of the most diagnostic SNPs between the two Scandinavian populations were validated by genotyping 47 individuals from each end of the species' Scandinavian distribution range. Sixty-nine of these SNPs were significantly (p < 0.05) differentiated (mean FST_173_loci = 0.065, FST_69_loci = 0.140). Using these validated SNPs, individuals were assigned with high probability (≥ 94%) to their populations of origin. CONCLUSIONS: Goldsinny wrasse displays a highly polymorphic genome, and substantial population genomic structure. Diversifying selection likely affects population structuring globally and within Scandinavia. The diagnostic loci identified now provide a promising and cost-efficient tool to investigate goldsinny wrasse populations further.


Subject(s)
Genetic Drift , Genetics, Population , Perciformes/genetics , Polymorphism, Single Nucleotide , Animals , Genome , Scandinavian and Nordic Countries , Scotland , Spain
12.
Ecol Evol ; 10(12): 6120-6135, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32607218

ABSTRACT

Capture and long-distance translocation of cleaner fish to control lice infestations on marine salmonid farms has the potential to influence wild populations via overexploitation in source regions, and introgression in recipient regions. Knowledge of population genetic structure is therefore required. We studied the genetic structure of ballan wrasse, a phenotypically diverse and extensively used cleaner fish, from 18 locations in Norway and Sweden, and from Galicia, Spain, using 82 SNP markers. We detected two very distinct genetic groups in Scandinavia, northwestern and southeastern. These groups were split by a stretch of sandy beaches in southwest Norway, representing a habitat discontinuity for this rocky shore associated benthic egg-laying species. Wrasse from Galicia were highly differentiated from all Scandinavian locations, but more similar to northwestern than southeastern locations. Distinct genetic differences were observed between sympatric spotty and plain phenotypes in Galicia, but not in Scandinavia. The mechanisms underlying the geographic patterns between phenotypes are discussed, but not identified. We conclude that extensive aquaculture-mediated translocation of ballan wrasse from Sweden and southern Norway to western and middle Norway has the potential to mix genetically distinct populations. These results question the sustainability of the current cleaner fish practice.

13.
BMC Genet ; 21(1): 13, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32033538

ABSTRACT

BACKGROUND: Quantitative traits are typically considered to be under additive genetic control. Although there are indications that non-additive factors have the potential to contribute to trait variation, experimental demonstration remains scarce. Here, we investigated the genetic basis of growth in Atlantic salmon by exploiting the high level of genetic diversity and trait expression among domesticated, hybrid and wild populations. RESULTS: After rearing fish in common-garden experiments under aquaculture conditions, we performed a variance component analysis in four mapping populations totaling ~ 7000 individuals from six wild, two domesticated and three F1 wild/domesticated hybrid strains. Across the four independent datasets, genome-wide significant quantitative trait loci (QTLs) associated with weight and length were detected on a total of 18 chromosomes, reflecting the polygenic nature of growth. Significant QTLs correlated with both length and weight were detected on chromosomes 2, 6 and 9 in multiple datasets. Significantly, epistatic QTLs were detected in all datasets. DISCUSSION: The observed interactions demonstrated that the phenotypic effect of inheriting an allele deviated between half-sib families. Gene-by-gene interactions were also suggested, where the combined effect of two loci resulted in a genetic effect upon phenotypic variance, while no genetic effect was detected when the two loci were considered separately. To our knowledge, this is the first documentation of epistasis in a quantitative trait in Atlantic salmon. These novel results are of relevance for breeding programs, and for predicting the evolutionary consequences of domestication-introgression in wild populations.


Subject(s)
Domestication , Epistasis, Genetic , Quantitative Trait Loci , Salmo salar/growth & development , Salmo salar/genetics , Animals , Breeding , Chromosome Mapping , Female , Genetic Linkage , Male , Phenotype
14.
R Soc Open Sci ; 6(4): 190021, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31183145

ABSTRACT

The diversity of reproduction and associated mating patterns in Atlantic salmon (Salmo salar) has long captivated evolutionary biologists. Salmo salar exhibit strategies involving migration, bold mating behaviours and radical morphological and physiological change. One such radical change is the elongation and curvature of the lower jaw in sexually mature males into a hook-like appendage called the kype. The kype is a secondary sexual characteristic used in mating hierarchies and a prime candidate for sexual selection. As one of the core global aquaculture fish species, however, mate choice, and thus sexual selection, has been replaced by industrial artificial fertilization seeking to develop more commercially viable strains. Removal of mate choice provides a unique opportunity to examine the kype over successive generations in the absence of sexual selection. Here we use a large-scale common-garden experiment, incorporating six experimental strains (wild, farmed and wild × farmed hybrids), experiencing one to three sea winters, to assess the impact of age and genetic background. After controlling for allometry, fork length-adjusted kype height (AKH) was significantly reduced in the domesticated strain in comparison to two wild strains. Furthermore, genetic variation at a locus on linkage group SSA1 was associated with kype height, and a locus on linkage group SSA23 was associated with fork length-adjusted kype length (AKL). The reduction in fork length-AKH in domesticated salmon suggests that the kype is of importance in mate choice and that it has decreased due to relaxation of sexual selection. Fork length-AKL showed an increase in domesticated individuals, highlighting that it may not be an important cue in mate choice. These results give us insight into the evolutionary significance of the kype, as well as implications of genetic induced phenotypic change caused by domesticated individuals escaping into the natural environment.

15.
Evol Appl ; 12(5): 1001-1016, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31080511

ABSTRACT

Interactions between domesticated escapees and wild conspecifics represent a threat to the genetic integrity and fitness of native populations. For Atlantic salmon, the recurrent presence of large numbers of domesticated escapees in the wild makes it necessary to better understand their impacts on native populations. We planted 254,400 eggs from 75 families of domesticated, F1-hybrid, and wild salmon in a river containing up- and downstream traps. Additionally, 41,630 hatchery smolts of the same pedigrees were released into the river. Over 8 years, 6,669 out-migrating smolts and 356 returning adults were recaptured and identified to their families of origin with DNA. In comparison with wild salmon, domesticated fish had substantially lower egg to smolt survival (1.8% vs. 3.8% across cohorts), they migrated earlier in the year (11.8 days earlier across years), but they only displayed marginally larger smolt sizes and marginally lower smolt ages. Upon return to freshwater, domesticated salmon were substantially larger at age than wild salmon (2.4 vs. 2.0, 4.8 vs. 3.2, and 8.5 vs. 5.6 kg across sexes for 1, 2, and 3 sea-winter fish) and displayed substantially lower released smolt to adult survival (0.41% vs. 0.94% across releases). Overall, egg-to-returning adult survival ratios were 1:0.76:0.30 and 1:0.44:0.21 for wild:F1-hybrid:domesticated salmon, respectively, using two different types of data. This study represents the most updated and extensive analysis of domesticated, hybrid, and wild salmon in the wild and provides the first documentation of a clear genetic difference in the timing of smolt migration-an adaptive trait presumed to be linked with optimal timing of entry to seawater. We conclude that spawning and hybridization of domesticated escapees can lead to (i) reduced wild smolt output and therefore wild adult abundance, through resource competition in freshwater, (ii) reduced total adult abundance due to freshwater competition and reduced marine survival of domesticated salmon, and (iii) maladaptive changes in phenotypic traits.

16.
Sci Rep ; 8(1): 13966, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30228303

ABSTRACT

Domesticated Atlantic salmon grow much faster than wild salmon when reared together in fish tanks under farming conditions (size ratios typically 1:2-3). In contrast, domesticated salmon only display marginally higher growth than wild salmon when reared together in rivers (size ratios typically 1:1-1.2). This begs the question why? Is this a difference in the plastic response driven by divergent energy budgets between the two environments, or is it a result of selection, whereby domesticated salmon that display the greatest growth-potential are those at greatest risk of mortality in the wild? We reared domesticated, hybrid and wild salmon in a river until they smoltified at age 2 or 4, and thereafter in fish tanks for a further 2 years. In the river, there was no difference in the mean size between the groups. In contrast, after being transferred from the river to fish tanks, the domesticated salmon significantly outgrew the wild salmon (maximum size ratio of ~1:1.8). This demonstrates that selection alone cannot be responsible for the lack of growth differences observed between domesticated and wild salmon in rivers. Nevertheless, the final size ratios observed after rearing in tanks were lower than expected in that environment, thus suggesting that plasticity, as for selection, cannot be the sole mechanism. We therefore conclude that a combination of energy-budget plasticity, and selection via growth-potential mortality, cause the differences in growth reaction norms between domesticated and wild salmon across these contrasting environments. Our results imply that if phenotypic changes are not observed in wild populations following introgression of domesticated conspecifics, it does not mean that functional genetic changes have not occurred in the admixed population. Clearly, under the right environmental conditions, the underlying genetic changes will manifest themselves in the phenotype.


Subject(s)
Adaptation, Biological , Animals, Domestic/growth & development , Domestication , Environment , Salmo salar/growth & development , Animals , Animals, Domestic/physiology , Fisheries , Phenotype , Salmo salar/physiology
17.
BMC Genet ; 19(1): 42, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29986643

ABSTRACT

BACKGROUND: Atlantic cod (Gadus morhua L.) has formed the basis of many economically significant fisheries in the North Atlantic, and is one of the best studied marine fishes, but a legacy of overexploitation has depleted populations and collapsed fisheries in several regions. Previous studies have identified considerable population genetic structure for Atlantic cod. However, within Norway, which is the country with the largest remaining catch in the Atlantic, the population genetic structure of coastal cod (NCC) along the entire coastline has not yet been investigated. We sampled > 4000 cod from 55 spawning sites. All fish were genotyped with 6 microsatellite markers and Pan I (Dataset 1). A sub-set of the samples (1295 fish from 17 locations) were also genotyped with an additional 9 microsatellites (Dataset 2). Otoliths were read in order to exclude North East Arctic Cod (NEAC) from the analyses, as and where appropriate. RESULTS: We found no difference in genetic diversity, measured as number of alleles, allelic richness, heterozygosity nor effective population sizes, in the north-south gradient. In both data sets, weak but significant population genetic structure was revealed (Dataset 1: global FST = 0.008, P < 0.0001. Dataset 2: global FST = 0.004, P < 0.0001). While no clear genetic groups were identified, genetic differentiation increased among geographically-distinct samples. Although the locus Gmo132 was identified as a candidate for positive selection, possibly through linkage with a genomic region under selection, overall trends remained when this locus was excluded from the analyses. The most common allele in loci Gmo132 and Gmo34 showed a marked frequency change in the north-south gradient, increasing towards the frequency observed in NEAC in the north. CONCLUSION: We conclude that Norwegian coastal cod displays significant population genetic structure throughout its entire range, that follows a trend of isolation by distance. Furthermore, we suggest that a gradient of genetic introgression between NEAC and NCC contributes to the observed population genetic structure. The current management regime for coastal cod in Norway, dividing it into two stocks at 62°N, represents a simplification of the level of genetic connectivity among coastal cod in Norway, and needs revision.


Subject(s)
Gadus morhua/genetics , Animals , Aquaculture , Genomics , Genotype , Genotyping Techniques , Microsatellite Repeats/genetics , Norway , Otolithic Membrane/anatomy & histology , Population/genetics , Selection, Genetic
18.
BMC Ecol ; 18(1): 14, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29650003

ABSTRACT

BACKGROUND: In fish, morphological colour changes occur from variations in pigment concentrations and in the morphology, density, and distribution of chromatophores in the skin. However, the underlying mechanisms remain unresolved in most species. Here, we describe the first investigation into the genetic and environmental basis of spot pattern development in one of the world's most studied fishes, the Atlantic salmon. We reared 920 salmon from 64 families of domesticated, F1-hybrid and wild origin in two contrasting environments (Hatchery; tanks for the freshwater stage and sea cages for the marine stage, and River; a natural river for the freshwater stage and tanks for the marine stage). Fish were measured, photographed and spot patterns evaluated. RESULTS: In the Hatchery experiment, significant but modest differences in spot density were observed among domesticated, F1-hybrid (1.4-fold spottier than domesticated) and wild salmon (1.7-fold spottier than domesticated). A heritability of 6% was calculated for spot density, and a significant QTL on linkage group SSA014 was detected. In the River experiment, significant but modest differences in spot density were also observed among domesticated, F1-hybrid (1.2-fold spottier than domesticated) and wild salmon (1.8-fold spottier than domesticated). Domesticated salmon were sevenfold spottier in the Hatchery vs. River experiment. While different wild populations were used for the two experiments, on average, these were 6.2-fold spottier in the Hatchery vs. River experiment. Fish in the Hatchery experiment displayed scattered to random spot patterns while fish in the River experiment displayed clustered spot patterns. CONCLUSIONS: These data demonstrate that while genetics plays an underlying role, environmental variation represents the primary determinant of spot pattern development in Atlantic salmon.


Subject(s)
Environment , Pigmentation/physiology , Salmo salar/physiology , Animals , Pigmentation/genetics , Salmo salar/genetics
19.
Evol Appl ; 10(10): 1007-1019, 2017 12.
Article in English | MEDLINE | ID: mdl-29151856

ABSTRACT

The salmon louse is a highly abundant ectoparasitic copepod of salmonids in the North Pacific and Atlantic. Widespread and rapid development of resistance to chemical agents used to delouse salmonids on marine farms is now threatening the continued development of the aquaculture industry and have served as a potent catalyst for the development of alternative pest management strategies. These include freshwater and warm-water treatments to which the louse is sensitive. However, given the well-documented evolutionary capacity of this species, the risk of developing tolerance towards these environmental treatments cannot be dismissed. Two common-garden experiments were performed using full-sibling families of lice identified by DNA parentage testing to investigate whether one of the fundamental premises for evolution, in this context genetic variation in the capacity of coping with fresh or warm water, exists within this species. Significant differences in survival were observed among families in both experiments, although for the salinity experiment, it was not possible to unequivocally disentangle background mortality from treatment-induced mortality. Thus, our data demonstrate genetic variation in tolerance of warm water and are suggestive of genetic variation in salinity tolerance. We conclude that extensive use of these environmental-based treatments to delouse salmonids on commercial farms may drive lice towards increased tolerance.

20.
Sci Rep ; 7(1): 14258, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29079820

ABSTRACT

The parasitic salmon louse, and its resistance to chemical delousing agents, represents one of the largest challenges to the salmon aquaculture industry. We genotyped lice sampled from wild salmon and sea trout throughout Norway with the recently identified Phe362Tyr mutation that conveys resistance to organophosphates. These results were compared to data from lice sampled on farmed salmon in the same regions. The resistant (R) allele was observed in salmon lice from wild salmon and sea trout throughout Norway, although its frequency was highest in farming-intense regions. In most regions, the frequency of the R allele was higher in lice collected from wild sea trout than wild Atlantic salmon, and in all regions, the frequency of the R allele was similar in lice collected from wild sea trout and farmed Atlantic salmon. The R allele is only selected for in fish-farms where organophosphates are used for delousing. Therefore, our results suggest extensive exchange of lice between farmed and wild hosts, and indicate that in farming-dense regions in Norway, aquaculture represents a major driver of salmon louse population structure. Finally, these data suggest that the wild hosts within the regions studied will not delay the spread of resistance when organophosphates are used.


Subject(s)
Copepoda/drug effects , Copepoda/genetics , Drug Resistance/genetics , Mutation , Oncorhynchus mykiss/microbiology , Organophosphates/pharmacology , Salmo salar/parasitology , Alleles , Animals , Aquaculture , Copepoda/physiology , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...